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Thermodynamics in a complete description of Landau diamagnetism
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In the present study we analyze some consequences that come from revised measures as the Wehrl entropy
and the Fisher information for the problem of a particle in a magnetic field starting from a complete description
of the Husimi function. We discuss in the most complete form (three dimensions) some results related to
measures in contrast with the incomplete form (two dimensions) shown in previous contributions. Some
limiting cases as high and low temperatures are discussed. From the present reasoning, it is suggested that the
formulation in two dimensions is sufficient unto itself to explain the problem whenever the length of the
cylindrical geometry of the system is large enough. Otherwise, it is not possible to work in all finite tempera-
tures, a natural lower temperature bound emerges from the analysis when three dimensions are considered.
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I. INTRODUCTION

Diamagnetism was a problem first appointed by Landau
who showed the discreteness of energy levels for a charged
particle in a magnetic field [1]. By the observation of the
diverse scenarios in the framework provided by the Landau
diamagnetism we can study some relevant physical proper-
ties [2—4] as thermodynamic limit, role of boundaries, deco-
herence induced by the environment. The main motivation
for several specialists work even today it is to make an ac-
curate description of its theoretical and practical conse-
quences.

In the past the appropriate partition function for this prob-
lem was calculated by Feldman and Kahn appealing to the
concept of Glauber’s coherent states as a set of basis states
[5]. This formulation allows the use of classical concepts to
describe electron orbits, even containing all quantum effects
[5]. In a previous effort, this approach was used to obtain the
Wehrl entropy [6,7] and Fisher information [8] with the pur-
pose of studying the thermodynamics of the Landau diamag-
netism problem, namely, a free spinless electron in a uniform
magnetic field [9]. In such contribution the authors focused
only in the transverse motion of a particle. For this reason, it
was necessary to normalize the Husimi distribution in order
to arrive to a consistent expression for semiclassical mea-
sures [9-11].

Certainly, because the relevant effects seem to come only
from the transverse motion, several efforts are made to de-
scribe this problem in two dimensions [3,4,9-13]. Further-
more, since the discovery of interesting phenomena, as the
quantum Hall effect, there has been much interest in under-
standing the dynamics of electrons confined to move in two
dimensions in the presence of a magnetic field perpendicular
to the motion plane [13]. The confinement is possible at the
interface between two materials, typically a semiconductor
and an insulator, where a quantum well that traps the par-
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ticles is formed, forbidding their motion in the direction per-
pendicular to the interface plane at low energies.

However, we propose here to discuss this problem in the
most complete form (three dimensions), some results related
to the behavior of the Wehrl entropy in contrast with the
incomplete form (two dimensions). From the present line of
reasoning, it is concluded that the two-dimensional formula-
tion is sufficient unto itself to explain the problem whenever
the length of the cylindrical geometry of the system is large
enough. Nevertheless, as suggested before, electronic de-
vices are based in interfaces. Thus, this fact theoretically
imposes a natural lower temperature bound that emerges
from the analysis when three dimensions are considered.

The main goal of this paper is to illustrate how to obtain
new properties concerning this problem when the complete
motion of the particle is considered, i.e., the free motion
along the z axis (in the magnetic field direction), and the
transverse motion. Thus, we can supply the exact Wehrl en-
tropy and Fisher information starting from a revised version
of calculations. From this kind of analysis, a likely range of
validity of the present formulation is derived.

We will start our present endeavor defining the Hamil-

tonian H =I:It+I:I, for a particle of mass m and charge ¢ in a

magnetic field H, where H,=fQ(N+1/2) describes the
transverse motion, being (Q)=gH/mc the cyclotron frequency

[5] and N the number operator. In addition, the Hamiltonian

FAI,z ﬁf/ 2m represents a longitudinal one-dimensional free
motion. After constructing a coherent state basis, a possible
way to define the Husimi function #, for the complete mo-
tion, is given by

7(x.pyiy.pyip) = (@ ék|pla.é k), (1)

where p is the thermal density operator and the set {|a, &,k,)}
represents the coherent states for the motion in three dimen-
sions. Taking the direct product |a,&,k.)=|a, & ®|k.), the
set {|a, &} corresponds to the coherent states of the trans-
verse motion and {|k.)} to the longitudinal motion. Therefore,
the thermal density operator is given by
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where B=1/kgT, ky the Boltzmann constant and T the tem-
perature. Besides, Z is the partition function for the particle
total motion. If Z is separated in a similar way as other physi-
cal properties are separated, it is possible to assure that
Z=7,Z,, where Z, is the contribution for the transverse mo-
tion and Z; the contribution for the one-dimensional free mo-
tion. Thus, the Husimi function [14] is written as

2
e—sz/Zm

ZlZz

2 e_'BhQ("+1/2)|<n,m

n,m

7= a,§)*. (3)
where Z,=AmQ/[47h sinh(BH/2)], being L the length,
A=7R?> the area for cylindrical geometry [5], and
Z,=(L/h)(2mmkgT)"? [5]. In addition, the matrix element
[(n,m|a, &) represents the probability of finding the elec-
tron in the coherent state |a, &) and we can find its expression
as defined previously [15].

It should be noticed that the distribution # can be written
as follows:

n=1(p) 7(X.p:y.Py). (4)

where 7 has been separated as a function of two distribu-
tions, namely, 7,=7,(p.) and 7,=7,(x,p,;y,p,). The depen-
dence on the variable z has been missed due to the explicit

form of the Hamiltonian I:I,. Accordingly, after summing in
Eq. (3) we find

e—ﬂp§/2m
_ , 5
Y Z (5)
27h ~ (1P 0222
m= o (L= P e, (6)

where the length €,=(fic/qH)"? is the classical radius of the
ground-state Landau orbit [5]. From expressions (5) and (6),
we emphasize again that 7,(p,) describes the free motion of
the particle in the magnetic field direction and #,(x,p,;y,p,)
the Landau levels due to the circular motion in a transverse
plane to the magnetic field. Consequently Egs. (4)—(6) to-
gether contain the complete description of the system. We
noticed both distributions are naturally normalized in a stan-
dard form, i.e.,

dzdp,
f h 'ﬂl(pz) = la (7)
and
dad?
f 47T2€4H 7/t(x7px;y,Py)= 1. (8)

In consequence, both Egs. (5) and (6), under conditions (7)
and (8), bring a promising way to get the exact form of the
Wehrl entropy. Furthermore, using the additivity as the most
basic property of the entropy, we can state W ,=W;+W,.
Hence,
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dzdp,

WF‘J Tﬂz@z)ln 7(p,), )

d*ad?
W1=_ 47T2€i4_l Uz(x,Px;y’Py)ln nt(x7px;y,py)’ (10)
where, as before, the subindex [ stands for the longitudinal
motion and ¢ the transverse.
After evaluating the respective integrals in Egs. (9) and
(10), it is feasible to identify the two particular entropies

W, 1+1<L) (11)
=—+In| — |/,
) A

W,=1-In(1-¢?") +1n(g), (12)

where N=h/(27mkyT)"? is the mean thermal wavelength of
the particle and g=A/ 2776% stands for the degeneracy of a
Landau level [16]. Indeed, Eq. (11) coincides with the clas-
sical entropy for a free particle in one dimension. Equation
(12) is the exact result [9] for the transverse motion and
possesses a form for the Wehrl entropy close to the harmonic
oscillator entropy, with the exception of a term associated
with the degeneracy.

II. DISCUSSION OF RESULTS

Although the total Wehrl entropy is expressed simply as
follows:

3 L
Wiow = - In(1 — e +In(g) + ln<x>, (13)

we notice that some of its properties are directly derived
from Egs. (11) and (12). First, as we commented before, W,
coincides with the classical entropy for the free motion in
one dimension. From this glance, we can add that W, has to
be nonnegative, W;=0 at all temperatures. This last condi-
tion imposes a minimum temperature, given by

h2
To=—"—,
0 2mmekpl?

where ¢=2.718 281 828. The standard behavior of W, obli-
gates the system to take high values of temperature, wher-
ever the temperature 7 ought to be greater than 7|, in such
case the conduct of the system is classical. This is equivalent
to assert that, if 7/Ty=1, the length of a thermal wave \
lower than the average of the spacing among particles and
quantum considerations are not relevant [17]. In addition, 7
only depends on the size of the system and does not depend
on other external or internal physical parameters such as
transverse area, external magnetic field, charge of the par-
ticle, etc. If the system is large then the minimum tempera-
ture is low. However, modern electronic systems has junc-
tions where L is practically zero. In such case the required
minimum temperature to make applicable our description is
numerically high enough [18].

Nevertheless, the entropy associated with transverse mo-
tion satisfies W,=1+1In(g) for all temperatures in the system

(14)
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of a particle in a magnetic field where the symmetry is polar,
which is almost the Lieb condition for systems in one dimen-
sion [19] with an additional term associated with the degen-
eracy g. Roughly speaking, the transverse motion is bidimen-
sional, but in the Landau approach the quantum motion of
the particle in a magnetic field is reduced to a degenerate
spectrum in one dimension. This degeneracy essentially re-
covers the physics of the missing dimension. Resuming the
discussion of the behavior of the Wehrl entropy, it is not
plausible to adventure any conclusion about the applicability
of the present treatment because the Lieb condition is always
satisfied. This is the main problem stems from the restricted
vision presented in other contributions over this topic which
only put its emphasis on the transverse motion [5,9—11] and
represent the main difference from the vision obtained in that
other contributions that discuss this topic. From the com-
bined reasoning of both motions we conclude that the present
description, this is the calculation of W,, has sense when the
imposition over the temperature is satisfied. Under 7|, the
behavior is intrinsically anomalous and the present proposal
is not applicable.

A. High temperature approximation

If we consider kgT>h{), we can apply the first
order of approximation as In[g/(1—e#"Y)]=~In(AT/T,L?).
Indeed, taking into account that the thermal wavelength
can be rewritten in terms of the temperature 7, this way
N=L(eT,/T)"?, the expression (13) after a bit of algebra re-

duces to
T A
wl) =~ =] ( >+ln< ) (15)
total T() L2

Considering that V=AL in Eq. (15), the total Wehrl entropy
can be expressed as follows:

1%
Méﬁdl—-ﬂn(p). (16)

This is a particular expression for the entropy of a free par-
ticle in three dimensions related to the motion of a charged
particle into a region of the magnetic field making mention
of some geometrical properties of the system.

In second order of approximation for high temperatures,
considering the special condition A~ L?, Wehrl entropy is
expressed as follows:

3 3 T
‘/Vgt)dl = _g +7 2 + 5111( To) = _g + Motdl (17)

In Fig. 1, according to current approach, the trend of the
Wehrl entropy is depicted as a function of certain values of
T/Ty=1 and H/Hy=1. As explained before, the Wehrl en-
tropy takes values that are permitted by the Lieb condition,
namely, W=1. This fact is shown in Fig. 1(a) and 1(b).
Particularly, in Fig. 1(b), the linear dependence of the total
Wehrl entropy on the magnetic field at fixed temperature is
evident. According to Eq. (16) the slope decreases as tem-
perature increases, which is graphically shown for 7/T,
=15 and 20. This fact illustrates why the disorder slowly
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FIG. 1. The total Wehrl entropy is depicted as a function of (a)
the temperature and (b) the magnetic field. It is emphasized that the
total Wehrl entropy is shown in (a) at different values of the mag-
netic field greater than H,, and in (b) at several fixed values of
temperature greater than 7). Besides, it is shown in (a) a natural
bound for the temperature when we force W, to satisfy the Lieb
bound and in (b) the linear behavior of the Wehrl entropy for high
values of temperature.

increases as the magnetic field increases too. Consequently,
at extremely high temperatures as expected, the slope of the
present linear dependence tends to zero apparently taking a
constant value close to the corresponding classical entropy of
the free particle in three dimensions.

B. Low temperature approximation

The lower bound of temperature is related to 7/7,— 17,
because this approach does not consider temperature values
under 7,,. The total Wehrl entropy is reduced to logarithm
behavior of the magnetic field. This tendency is shown in
Fig. 1 through a solid line.

To study what occurs close to zero temperature, in accor-
dance with Eq. (14), we need to take systems with L— o and
after this consideration the transverse entropy of Eq. (12) can
be seen as follows:

W =1 +1n(g). (18)

As we discussed before, this Wehrl entropy is also a kind of
harmonic oscillator entropy and the lower bound complies
with being greater than a bound limiting value of the tem-
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perature, which has been suggested by Wehrl and shown by
Lieb, W=1 [19]. Starting from this condition it must arrive
to the following inequality for the magnetic field

g=1, (19)

where g=gAH/hc also accounts for the ratio between the
flux of the magnetic field HA and the quantum of the mag-
netic flux given by hc/g=4.14X107" [gauss/cm?] [22].
Then the inequality (19) adopts the form

1
q

Therefore, the quantity Hy=hc/Aq becomes a bound limiting
field that represents the minimum value for the external mag-
netic field. To study what occurs close to zero magnetic field
we need to take systems with A — oo,

For finite values of A and H lower than H, is manifested
the Haas—van Alphen effect, which describes oscillations in
the magnetization because at temperatures low enough the
particles will tend to occupy the lowest energy states.
Whereas if the value of the magnetic field decreases a less
number of particles can be in the lowest state due to degen-
eracy is directly proportional to H [16]. Then, the transverse
Wehrl entropy W, is well defined for values of the magnetic
field over H, this is H/Hy=1 and/or g— 1*.

We can assert that this description of the system is not
quantum, we say that it is semiclassical; for instance, it does
not contain the Haas—van Alphen effect, the same condition
marks the beginning of one description and the ending of the
other.

Other relevant effect that emerges from the Landau quan-
tization [20] is the quantum Hall effect [21] which is a
quantum-mechanical version of the Hall effect [13], ob-
served in two-dimensional electron systems subjected to low
temperatures and strong magnetic fields. The degeneracy is
given by [22]

¢: V¢0, (21)

where ¢y=hc/q is the quantum of the magnetic flux. The
factor v is related to the “filling factor” that takes integer
values (v=1,2,3,...). The discovery of the fractional quan-
tum Hall effect [12] extend these values to rational fractions
(v=1/3,1/5,5/2,12/5,...). The integer quantum Hall ef-
fect is simply explained in terms of the conductivity quanti-
zation o= qu/ h. However, the fractional quantum Hall ef-
fect relies on other phenomena related to interactions.
Consistently, we see that the degeneracy is equal to v, which
must be greater than 1 due to the inequality (19) obtaining an
infinite family of Wehrl entropies

W,=1-1In(1 — ) +1n v. (22)

Again, Eq. (19) provides the limiting value of v and, as be-
fore, the transverse entropy always satisfies the Lieb bound
for all temperatures and large enough systems when the
quantum Hall effect is manifested at least for the integer
quantum Hall effect. Conversely, fractional values of v less
than 1 are left out the present approach.
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III. FISHER INFORMATION MEASURE
VERSUS DEGENERACY

Here is proposed a compact expression for the transverse
Fisher information measure. We take into account a special
way, as formerly developed [23], a form given by

2 0
J d ad° & (a)(&ln Z,(a)) (23)

a2t

After introducing the known expression for 7,, we arrive to
2 -BiQ
I=—(1-¢eP"). (24)
Gy

We notice this measure has a space dimension (L)~2. Thus, I,
quantifies the ability for estimating the parameter a [5],
which represents the radio of the circular orbit of the coher-
ent states. Indeed, Eq. (24) shows a linear dependence that
the parameter /, exhibits with the magnetic field through the
constant €%I at low temperature. Then, combining Egs. (24)
and (21) with the definition of €} we obtain

_Amg
A

e P, (25)
which represents the quantization of the Fisher information
measure. From Eq. (25), we can see that Fisher information
exponentially decreases as temperature increases. Beside, the
growth of the starting value directly depends on the factor v.
The larger is v, the higher is the Fisher information at all
temperatures. This gain of the ability for estimating the pa-
rameter « is due to the degeneracy via the factor v. Thus

4
o <o (26)

In addition, with the purpose to describe the complete
motion, we consider now the Fisher information measure for
the longitudinal movement, this is

1= f dzdp, . )<(91n Zl(pz)> ’ @7

Z

where p, is the parameter to be considered and previously
ignored [9]. Writing 7, into the above equation, we get

II=E.
m

(28)
This particular result coincides with the one-dimensional
Fisher measure for the classical free particle [24]. Finally, it

is emphasized that the total Fisher measure is constructed
multiplying Eq. (25) by Eq. (28).

IV. CONCLUDING REMARKS

In the present contribution, we have widely discussed the
behavior of several thermodynamical quantities whereas a
complete vision in phase space is adopted. When only the
transverse motion is considered, diverse difficulties appear in
the corresponding interpretation of results, specifically, a
non-normalized Husimi distribution [9] is obtained. In the
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present work we solve the problem by considering the com-
plete motion of the particle. As a consequence we obtain a
normalized Husimi distribution in a natural way and all ther-
modynamic quantities are well defined. In this instance, we
have calculated the semiclassical total Wehrl entropy as a
sum of two terms, one for the transverse motion and the
other for the longitudinal motion. Indeed, the total Wehrl
entropy has been expressed in terms of the cyclotron fre-
quency, the mean thermal wavelength and, the degeneracy of
the Landau levels [Eq. (13)]. We have analyzed two limit
cases. At high temperatures, we have associated the semi-
classical entropy with the geometrical properties of the sys-
tem and with the temperature 7, such that this approach has
sense [Eq. (15)]. At low temperatures, we have found the
minimum value of the external magnetic field that depends
on the transversal area. Moreover, from the quantization of
the quantum Hall effect, we have obtained a family of quan-
tized Wehrl entropies [Eq. (22)]. Also, we have given a quan-
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tized version [Eq. (25)] of the transverse Fisher information,
which is inverse to the area. Furthermore, we have found the
longitudinal Fisher information [Eq. (28)] inverse to the tem-
perature.

Finally, we assert that our semiclassical description con-
stitutes a useful framework to illustrate problems related to
size effects, role of boundaries and other typical anomalies
derived from the size of the system, which are refereed to
two parameters as A and L and they explicitly appear in the
form of the T, Hy, etc. In addition, the zero temperature can
be achieved only if the length of the system L is large
enough, otherwise physical properties strongly depend on the
size of the system.
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